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If Zf(Zk) is an exact generalized diatomic orbital (solution of Eq. (1) of text), a sequence of functions 
Z~N~ converging to Z~ may be constructed so that matrix elements of frequently occurring operators 
between Z~ m and Z~N~ may be computed without any numerical integration. Exact expectation values 
are given for kinetic and potential energy, dipole moment, 02= x2+  y2, and quadrupole moment 
3z 2 - r 2, for various ratios of nuclear charges Z~, Z2 and for several distances R. Special subjects 
discussed in terms of computed expectation values are: 

i) R-dependence of the contributions to total energy of Hel l  2+ in state 2p~r and of LiH 3+ in 
state 3da 

ii) RZ- and 2-dependence of dipole and quadrupole moment functions in state lsa 
iii) Some properties of those generalized diatomic orbitals which approach, for R going to 0, 

Slater-type atomic functions. 

Sei Zi(Zk) eine exakte L6sung des verallgemeinerten Zweizentren-Problems (G1. (1) im Text). 
Dann l~il3t sich eine Funktionenfolge Z~ N) konstruieren, die gegen Z~ konvergiert und so beschaffen 
ist, dab Matrixelemente h~iufig ben6tigter Operatoren zwischen X! N~ und Z~ m ohne numerische Inte- 
grationen berechnet werden k6nnen. Exakte Erwartungswerte werden fiir kinetische und potentielle 
Energie, Dipolmoment, 02 = x 2 + y2 und Quadrupolmoment 3z 2 - r 2 fiir zahlreiche Kombinationen 
von Kernladungszahlen Z1, Z 2 und verschiedene Kernabst~inde angegeben. 

Von berechneten Erwartungswerten ausgebend, werden insbesondere diskutiert: 
1) die R-Abh~ingigkeit der Energiebestandteile von Hel l  2+ im Zustand 2pa und von LiH 3+ im 

Zustand 3da 
2) Die RZ- und 2-Abhiingigkeit der Dipol- und Quadrupolmomentfunktion im lsa-Zustand 
3) einige Eigenschaften sotcher verallgemeinerter zweiatomiger Orbitale, die ffir R ~ 0  gegen 

atomare Slaterfunktionen konvergieren. 

Si ~i(~k) est  une orbitale diatomique g6n6ralis6e exacte (solution de l'6quation (1)), on peut 
construire une suite de fonctions ZI m convergent vers Si, telle que les 616ments de matrice des op6rateurs 
courants entre Xt N) et ~m puissent ~tre calcul6s sans aueune int6gration num6rique. Les valeurs 
moyennes exactes sont obtenues pour l'6nergie cin6tique et l'6nergie potentielle, le moment dipolaire, 
02= x2+  y2 ainsi que le moment  quadrupolaire 3z 2 -  r 2 pour diff6rents rapports des charges nucl6- 
aires Z 1 , Z 2 et diff6rentes distances R. 

On discute des sujets suivants en fonction des valeurs moyennes calcul6es: 
1) variations avec R des contributions ~i l'6nergie pour He l l  2+ dans l'6tat 2ptr et LiH a+ dans 

l'6tat 3d~r. 
2) variations avec R Z  et 2 des moments dipolaires et quadrupolaires dans l'6tat lsa. 
3) certaines propri6t6s de ces orbitales diatomiques g6n6ralis6es qui, lorsque R tend vers z6ro, 

se rapprochent des fonctions atomiques de type Slater. 

* Part of this was delivered on the Seminar on Computational Problems in Quantum Chemistry, 
Stragburg 1969. 
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A. Introduction 

In previous work (1-1], from now on referenced by I) on the separable gener- 
alized quantum mechanical two-centre problem 

( A Z 1 Z 2  Q_) 
2 r 1 r2 rl"r2 z=Ez,  (1) 

emphasis was put on the exact computation of the energy E and the separation 
constant A' (I, Eq. (5a) and (5 b)) as functions of R, RZ1, RZ2, and Q for various 
electronic states. 

There are several reasons for now making available expectation values, 
computed with Z. 

i) Not only H + in the lsag state, but also Hel l  2+ (2pa) and LiH 3+ (3da) 
possess each a total energy curve with a minimum. The question is whether the 
discussion of the chemical binding in H~- given by Slater (for instance in [2]) 
further holds when heteronuclear one-electron systems are considered. 

ii) Increasing work is done on nuclear charge expansions for the energy and 
other properties of diatomic molecules so that our results may serve as test 
values or as a numerical basis. 

iii) Recent own CI-calculations on two- and four-electron-molecules show 
the necessity of including those functions of type (1) which converge to Slater 
type atomic orbitals (STAOs) for R ~ 0 in the one-electron basis. Some properties 
of these "Slater type diatomic orbitals" (STDOs) are to be studied. 

B. Method of Generating Z r and of Computing Matrix Elements 

I. In order to get approximations Z (N) with lim z(N)=z (solution of (1)) 
N-~oo 

possessing such a form that the calculation of matrix elements becomes easy, 
the following procedure consisting of three steps has been successfully applied: 

In the first step, the energy parameter p, defined by 

E = 2p2 
R~ " , (2) 

and the separation constant A', defined by Eq. (5) of I, are determined simultane- 
ously by a Newton-Raphson-procedure for two variables which has been described 
in I and [3]. It is essentially based on three-term recursion formulas for the 
expansion coefficients. Table 1 contains the underlying expansions for the factors 
U(#) and V(v) ofz. 

In the second step, an expansion for V(v) used in the first step is cast away 
(if Z 1 #Z2)  in favour of an expansion in terms of generalized Legendre 
functions without a factor exp(___pv). This new expansion gives rise to afire-term 
recursion formula for the  expansion coefficients. As p and A' are known, at that 
stage of computation, with high accuracy, two steps of Wieland iteration 

(B+A'E)d't"+I)=d '(") (n=0,  1) (3) 
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will do to determine the expansion coefficients d~ gathered in the column vector 
d'. The pentadiagonal matrix B is given in the appendix; the numerical method 
for treating (3) is due to Zurmfihl [4]. 

In the case Z1 = Z2 (D~h) and if the coefficients c~ for U(p) are to be computed, 
Miller's recurrence algorithm [5] provides a stable and fast procedure for solving 

Ac' = - A ' c '  (4) 

with A a tridiagonal matrix (I). 
In the third and last step, the expansions of U(#) and V(v) are truncated 

to N c + 1 respectively N a + 1 terms, usually choosing Nc + 1 = N a + 1 = N. The 
finite expansions in terms of polynomials LIimml I +j(2pt) anu rimt+ktJ him1 tV~j are transformed 
into equivalent ordinary polynomials in terms of powers of t = # -  1 and of v, 
using formulae given by Miller [6]. After normalization, the final computational 
form of Z (m is 

Nc 

Z(m= e- v, ~ q tJ[ t ( t+2)( l_v2)]  2 
j=0 

t = # - i  

(Z(m [Z (m) -- 1 

121 Na \2 
i [ 1 - v 2 ]  k~=odkV k) d v = l  

- 1  

[ml N a eim~ 
dkv k (4a) 

k=0 1 / ~  
(4b) 

(4c) 

All three steps are contained in the body of the ALGOL procedure GENDO.  
Its input parameters are the quantum numbers n, l, m, and the quantities RZ1, 
RZ2, Q, N; output is p, m, No, e, Nd, d. 

II. F be a multiplicative operator representable by a finite polynomial in 
the two variables t = # -  1 and v: 

(#2 _ v2) F = ~ ~ alktiv k . (5) 
i k 

Evidently F is well described by the matrix a with elements aik. For computing 

Fp(m = (Z~m i F [Z~m), (6) q 

which is done by a call of the ALGOL procedure MATRIXELEMENT,  only 
polynomial multiplications and calculation of integrals such as 

~o j~ 
e-l"~tJdt - p3~ 1 (no A-integrals !) (7a) 

0 

0 j odd 

i vJdv = j even 
2 

-1 j + l  
(no B-integrals !) (7b) 

have to be performed. 
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Table 1. Suggested expansions and corresponding algorithms for generalized diatomic orbitals 
eimr 

X(m= 8 U @ V ( v ) ~  

u(~) v(v) 

1st step: __~ Iml 
Evaluation of p, A' e 2 (p2 _ 1)~- ~. , Iml cjLim I +j(X) 

j = o  

with x = 2p(# - 1) 
Algorithm: 
Newton-Raphson- 
procedure for 2 variables 

End step: 
generation of X (N) 

Algorithms: 

as above 

Miller's recurrence algorithm 

[m~ Ne 
3rdstep: e-P,[t(t+2)] 2 ~ c y  
transformation of ~(m j=o 
into computational form with t = # - 1 

~.4,,l~lml t,,'~ if Z1 # Z  2 ePV ~k~lml +k~:) 
k=0 (DIORPA) 

, I,n I dkPtml+k(V ) if Z 1 = Z  2 
k=O 

(HODOPA) 

kmax 
, Iml dkPim I +k(V) 

k=0  

Wielandt iteration if Z1 # Z2 
Miller's rec. alg. if Zx = Z2 

I,.I N~ 
[ 1 - v  212 y~d~v k 

k=O 

Opera tors  representable  in the form (5) are, for ins tance 

1 2 1 2 1 4 

ra R(kt + v) r 2 R ( p  - v) rar E RE(~ 2 - -  V 2 )  

R 
z =  5 - ~ v  

~ 2  ~--- 1 2 ~-  (p - 1) (1 - v 2) 

(8) 

The matr ix  e lement  of the kinet ic  energy - A / 2  between two funct ions of the 
form (4) can b e  evaluated by several calls of M A T R I X E L E M E N T  (TE). 

III. In  order to compute  

Fpq = (zp lFIzq)  (9) 

between exact solut ions  Zp, Zq of (1), the sequence 

Fp<N) = (X(N) i F i Z(N)) (10) q 

has to be studied. 
The  following numer ica l  example shows the speed of convergence of F (m 

to the expectat ion value of F = qE = xE + yE for the l sa  o state of H +. Graphs  of 
Q-'~ and  T = - A-~, as funct ions  of R, computed  for var ious states of H~-(Z a = Z E = 1) 
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"=- '"--~' ' -+ H~_ : Z 0 =t 92=x2+y 2 
< x l g ~ l •  Zo zo 

[4]  |oo 

50 

20 
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0.5 . . . . . .  . R Z  ~ 
o 1 2 3 ~ s ~ 7 8 9 1'o[%] 

Fig. 1. Expectation values (Q2> of the square of the distance between the electron and the internuclear 
axis as functions of the nuclear distance R, for 11 states of H; 

T/7 I T=(xl~/2[x) 
[e?'/QO] ~ Z1 =Z2~ to- ~g 

0.8- ~ Z~ 

0.4- 

0.2- '~ 

f~ �9 �89 ~ .  

. . . . .  'o [~o] RZo  0 2 Z, 6 8 1 

Fig. 2. Expectation values of kinetic energy as functions of the nuclear distance R, for 11 states of H~ 



386 K. Helfr ich:  

and other homonuclear  one-electron molecules (Z 1 = Z 2 = Z 0 5; ~ 1), are given in 
Figs. 1 and 2. 

N R = l a  o R = 2 a  o R = 5 a  o R = 1 0 a o  

3 0.844642 1.28218 2.03610 2.01720 
4 0.847234 1.28351 2.03653 2.00559 
5 0.847056 1.28345 2.03652 2.00610 
6 0.847055 1.28345 2.03652 2.00611 
7 0.847054 1.28345 2.03652 2.00611 
8 0.847054 1.28345 2.03652 2.00611 

C. R-Dependence of the Contributions to the Total Energy in the 2pa State 
of HeI-I z + and in the 3da State of LiH 3 + 

In [2], Slater has examined the ground state ls~rg of H~ and given a thorough 
analysis of the behaviour of expectation values 

Ekl, = (ZI - A/2[Z) 

- -  ( Zo Zo ) Z o  ~ (11) 
Epot  = • rl r2 Z + ~  

Eto t = E k i  n + Epot  

as functions of the internuclear distance R. 
Since it has been known that also the system He l l  2 + - in the excited electronic 

state 2p~r - possesses a shallow min imum of the total energy Eto  t 1-7] and that 
the same holds for LiH 3+ in the state 3dcr [1], the corresponding expectation 
values Ekin and Epo  t ( a n d  Etot)  have been computed for a number  of internuclear 
distances R (Tables 2 and 3), and have been plotted in Figs. 3 and 4. Constants 

Table  2 

System:  H e l l  z+ Z l = 2  Z 2 = 1  ( Q = 0 )  
State:  2p cr 

R Eki"-- ~ Epo---- ~ Eto t ~ 0 "-~ 

0 
0.1 
0.2 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
8.0 

10.0 
12.0 
15.0 

9/8 
1.134014 17.737983 18.871997 
1.161062 7.701915 8.862977 
1.333772 1.468475 2.802247 
1.558875 - 0.897227 0.661658 
1.066219 - 1.411405 - 0.345186 
0.679167 - 1.191323 - 0.512157 
0.521178 - 1.052259 - 0.531081 
0.467233 - 0.989775 - 0.522543 
0.462695 - 0.975209 - 0.512514 
0.486780 - 0.989920 - 0.503141 
0.496235 - 0.997272 - 0.501037 
0.498495 - 0.998959 - 0.500464 
0.499432 - 0.999616 - 0.500184 

o 4/3 
0.03325 1.32592 
0.06599 1.30408 
0.15812 1.17381 
0.30869 0.98262 
0.67499 1.14973 
0.99152 1.52219 
1.34510 1.84743 
1.82964 2.04725 
2.45679 2.10267 
3.77604 2.03214 
4.89584 2.00052 
5.93424 1.99670 
7.45920 1.99727 

8/3 
2.64826 
2.59429 
2.27747 
1.78338 
1.77180 
2.65202 
4.69589 
8.35111 

13.91685 
29.31568 
48.12737 
70.49236 

111.30396 
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T a b l e  3 

Sys t em:  L i H  3+ Z 1 = 3  Z 2 = 1  ( Q = 0 )  
Sta te :  3da 

387 

R Eki . Epo t Eto t z" ~0 2 

0 
0.1 
0.2 

0.5 
1.0 

2.0 
3.0 

4.0 
5.0 
6.0 
7.0 

8.0 
10.0 
12.0 
15.0 

8/9 
0.889909 28.220864 29.110772 
0 .893012 13.216733 14.109745 
0 .916626 4 .185552 5 .102177 
1.025461 1.044546 2 .070007 
1.426602 - 1 .009607 0 .416995 
1.314788 - 1.508115 - 0 .193327 
0 .945628 - 1.374466 - 0 .428838 
0.648061 - 1.147458 - 0 .499397 

0 .521950 - 1.033765 - 0 .511815 
0 .485132 - 0 .995133 - 0 .510001 
0 .481380 - 0 .987861 - 0 .506481 
0 .491244 - 0 .993685 - 0 .502441 

0.496381 - 0 .997457 - 0 .501076 
0 .498685 - 0 .999103 - 0 .500418 

0 15/4 
0.02498 3.74531 
0 .04986 3.73115 
0 .12276 3.62936 
0 .23046 3.24025 
0.36315 2.06751 

0.59013 1.61874 
1.20240 1.58972 
1.94650 1.75760 
2.53836 1.94176 

3.10758 2.03435 
3 .69394 2.05009 
4 .83269 2 .01862 

5 .89710 2.00279 
7.43788 1.99852 

9/2 
4.49823 
4 .49280 

4.44908 
4 .22802 
3.52037 
4.37981 
6.80842 
9.97845 

14.28454 

20.34688 
28.07055 

47 .03384 
69.67322 

110.68798 

[o%] 
0.6 

0.4 1-0'5 

0.2 Et +o~[[5 ~ 

\ \  

- 0.2 Epo~ +/ 

Hell ++ (2po') 

R I i i 

0 ~ 0 8 ~0 1'2 ~ 
Fig.  3. E x p e c t a t i o n  va lues  of  k ine t i c  a n d  po t en t i a l  ene rgy  a n d  e igenva lue  Eto t as func t ions  o f  R, for  

the  first  exci ted s ta te  2pa of  H e l l  ++ 

have been added to each kind of  energy so that  each curve goes to zero at infinite 
separation. 

It  is evident f rom Figs. 3 and 4 that  Slater's distinction of  three ranges of R 
is valid also for H e l l  2 § (2po-) and L iH 3 § (3da). When  R decreases f rom infinity, 
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E 
[~oo] 

-1.0 

-0.8 

-0.6 

-0./* 

-0.2 

-'-0.2 

- - 0 . / .  

0 2 

-0.5 

Epot +1 

6 8 

Li H3* (3do  " ) 

f 

10 12 [%] 

Fig. 4. Expectation values of kinetic and potential energy and eigenvalue Eto t as functions of R, for 
the excited state 3da of LiH 3 + 

the potential e n e r g y  Epo-" ~ rises, and the kinetic e n e r g y  Eki-"" ~ falls (R > 6a o for Hel l  2 + 
and R > 9 a o  for LiH3+). When R is reduced further, the potential energy is 
lowered (whereas Eki" increases) until it reaches a minimum (2 < R < 6 for Hel l  z § 
and 3 <  R < 9 for LiH3+). Within this range of R, Eto t has its minimum where 
the decrease of E~pot (compared with its value at infinite separation) is only half 
compensated by the increase of ~k~. The third range of R is characterized by 
increasing E-~o t (due to internuclear repulsion) if R is lowered. 

D. Calculation of Dipole Moment Function 

For a lot of charge ratios Z 1 : Z2, Z1 + Z 2 being constant and equal to 1, the 
expectation value ~ of the coordinate z in the electronic state lsa has been 
computed. Numerical values of the quantity ~. Z, where Z = Z1 + Z2, as a function 
of the product RZ, are given in Table 4. Our results agree with those of Moisewitsch 
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0.1 
0.2 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
8.0 

10.0 
12.0 
15.0 
20.0 

Table 4. Dipole moment function - ~Z 
State: lsa 

0.2 1/3 0.5 2.0 3.0 
Lille 4 + Hell 2 + LiH 3 + (Li, - 1) + (He, - 1) 

0.01004 0.01672 0.02507 0.09890 0.14565 
0.02026 0.03374 0.05051 0.19207 0.26951 
0.05336 0.08849 0.13148 0.41492 0.47733 
0.12095 0.19847 0.28901 0.65843 0.65054 
0.32280 0.51130 0.70170 1.08414 1.06045 
0.64384 0.96094 1.21964 1.54501 1.52972 
1.10924 1.52146 1.78327 2.02674 2.01720 
1.70811 2.13093 2.34589 2.51744 2.51113 
2.38057 2.73466 2.89163 3.01221 3.00776 
3.68556 3.86260 3.94136 4.00691 4.00438 
4.83217 4.91851 4.96350 5.00443 5.00281 
5.89477 5.94540 5.97497 6.00308 6.00195 
7.43623 7.46574 7.48410 7.50197 7.50125 
9.96489 9.98091 9.99109 10.00111 10.00070 

and  S tewar t  [8] within the accuracy  c la imed by  these authors .  The  fol lowing 
o r i en ta t ion  of  the  z-axis, however ,  has  been accepted  for Tab le  4: 

Z1 R Z2 
I I 

z = 0  

Z :  usual ly  being posi t ive  and  larger  than  Z2,  ~ turns  out  to be negative.  The  
numer ica l  results  have been p lo t t ed  in Figs. 5 and  6. Fig. 5 gives - 7.  Z direct ly  
as a funct ion of  the quan t i t y  

2 -  Zi  - Z2 
Z~ + Z 2 

i n t roduced  by  Chang  and  Byers -Brown [9]. P a r a m e t e r  of  each curve is RZ.  
F r o m  the numer ica l  values or  f rom Fig. 5 it  can be taken  that ,  for smal l  values 
of  2 , -  ~. Z is near ly  p r o p o r t i o n a l  to tha t  quant i ty ,  R Z  being a constant .  In 
general ,  ~.  Z is an o d d  funct ion of  2. 

In  Fig. 6, the d ipo le  m o m e n t  funct ion -Z. Z = z + R/2.  Z (referring to centre  1 
as or ig in  for z') has  been p lo t t ed  aga ins t  R Z  using two logar i thmic  scales. F o r  
smal l  values  of  RZ,  z -v. Z is near ly  p r o p o r t i o n a l  to RZ,  2 being a constant .  So 
the resul t ing curves are  in i t ia l ly  s t ra ight  lines forming  an angle  of  45 ~ with the 
RZ-ax is .  Inspec t ion  of  Table  4 shows that,  for small  values of  RZ,  indeed 

1 ~ - 2  (12a) 
Z Z ~ - - f 2 . R Z  or R - ~ T  

The  co r r e spond ing  re la t ions  for z' = z + R/2 are:  

z ' Z ~ ( I - 2 ) R Z  or ~ - ~  ( 1 - 2 ) .  (12b) 
27 Theoret. chim. Acta (Bed.) Vol. 21 
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-2.Z 

1.0- 

0.8- 

0.6- 

z,, 
w,Z 

RZ = 2.0 

z = ( l s e d z l l s o ' }  

Z=Zl*Z 2 

RZ = 1.0 

, , , -  z,-z  = x 

0 I 2 3 Z 

Z1 - Z2 
Fig. 5. Expectation value of the centre of  negative charge ff as a function of the ratio ~ ,  for 

Z z  ~ the ground state lsa 

[o0], __ . + 

0.6- 

0.4 

0.2 

0.1 

0.06 

0.04 - 

0.02 - 

�9 0.01 , " R Z  
0.1 �9 02 0.5 1 2 S L S 6 8 10 20 30 [ % ]  

Fig. 6. Expectation value of z' as a function of R for ls~ ( z ' = 0  for centre 1) 
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Table 5. Dipole moment function "Z. Z for small values 
State: lsa 

0.2 1/3 0.5 
Lille 4 + Hell  ++ LiH 3 + 

8 -0.192 . . . .  0.296 -0.375 
27 

of RZ 

2.0 
(Li, - 1) + 

6 

391 

3.0 
(He, - 1) 

24 

-3 .81o-8  -5 .91o -8  -7 .41o-8  1.191o-6 4.81o-6 
-3 .021o-7  -4 .661o-7  -5 .901o-7  9.441o-6 3.771o-5 
-4 .611o-6  -7 .111o-6  -9 .001o-6  1.441o-4 5.731o-4 
-3.541o--5 -5 .461o-5  -6 .911o-5  1.101o-3 4.351o-3 
-2 .621o-4  -4 .041o-4  -5 .111o-4  7.931o-3 3.051o-2 
-3 .361o-3  -5 .161o-3  -6 .481o-3  8.511o-2 2.731o-1 
-2.091o - 2  -3 .181o-2  -3 .901o-2  3.421o- 1 8.491o- 1 

Ir"l.Z 

I0-I 

10-2 

10-3 

1 0  -4 - -  

1 0  -5  - 

10  - 6  

10-7 

z~=2 

Centre of positive charge 

zz=l 

lsd 

z'"  

/I / I / / / I  I I I I I I I I 
0.001 .002 0.05 0.1 02 OS 1 2 5 O" [ ~ Z  

o 

I I 
,0O5 0.01 0.02 

Fig. 7. Expectation value of z" = z - z+ as a function of R for lstr (z" = 0 for the centre of positive 
charge) 

27* 
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F vanishes for 2 = 1 and all R Z  because then positive charge is only at centre 1. 
If R Z  is increased, ~TZ remains finite (except for H~) and finally decreases pro- 
portional to the inverse square of R Z ,  as was deduced by Dalgarno and Stewart 
[10]. Aagain this asymptotic behaviour is well reflected in Fig. 6. 

The relations (12a) and (12b) show that the centre of negative charge 
approximately coincides with the centre of positive charge 

R R 
2 Z1 + -2- Z2 1 Z x - Z 2 1 

z + = Z I + Z z - 2 Z I + Z 2 R = - --~ 2 R  . 

It is therefore instructing to study also the expectation value of z"= z -  z+, i.e. 
the dipole moment function with reference to a coordinate system x, y, z", the 
origin of which is the centre of positive charge. Expectation values of z", as a 
function of R, are given in Table 5 and have been represented in Fig. 7. We take 
from our results that, for small values of R, approximately 

z'--VZ = 0.2 2 ( 2  2 - -  1) (RZ) a (in atomic units). (13) 

The polynomial factor P3 (2) = 2(2 2 - 1) indicates that the centre of negative charge 
and that of positive charge coincide for one-electron atomic ions (2 = 1, - 1) and 
for homonuclear one-electron molecular ions (2 = 0). 

E. Calculation of Quadrupole Moment Functions 

Besides of~, the expectation values of 0 2 = x 2 + y2 and z 2 have been computed, 
which combined give the expectation value of the quadrupole moment operator 

q = 3z 2 - r 2 = 2 z  2 - 0 2 (Table 6). (14a) 

Table 6. Quadrupole moment function ~. Z 2 

State: lstr 

R Z ~  0 0.2 0.5 0.5 2.0 3.0 
H~ Lil le  4 + He l l  / + LiH 3 + (Li, - 1) + (He, - 1) 

0.1 
0.2 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
8.0 

10.0 
12.0 
15.0 
20,0 

0.00167 0.00180 0.00204 0 .00251 0.01474 0.03013 
0.00669 0.00724 0.00820 0.01008 0.05623 0.10566 
0.0425.1 0.04621 0.05270 0.06506 0.27868 0.36923 
0.17666 0.19477 0.22562 0.28125 0.77607 0.77983 
0.77380 0.88853 1.06590 1.33713 2.29156 2.22079 
1.91650 2.31838 2.84414 3.48177 4.74346 4.66786 
3.75481 4.80283 5.86123 6.84704 8.19934 8.13228 
6.46219 8.65446 10.22120 11.37667 12.66609 12.60827 

10.22777 14.00229 15.82268 16.97332 18.14144 18.09133 
21.65131 28.59039 30.22274 31.17502 32.10833 32.06931 
38.98401 47.27945 48.55127 49.32313 50.08748 50.05574 
62.03581 69.74905 70.78057 71.42809 72.07327 72.04659 

105,23198 110.69569 111,51387 112.03695 112.55885 112.53735 
195.79622 198.63535 199.25268 199.64926 200.04427 200.02806 
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It is, however, more instructive to plot the expectation value of the quadrupole 
moment q' referring to centre 1 of the coordinate system, as this quantity remains 
finite (except for H+): 

q' = 3z '2 - rl 2 = 2z '2 - 0 '2 . (14b) 

As 0 = 0' and z'= z + R/2, the two moments q and q' are linked by the relation 

q' =q + 2Rf + R2/2. (15) 

In Fig. 8, ZEq 7 is plotted against RZ using logarithmic scales. For  small values 
of R Z, Z2"~ is proportional to the square of R Z resulting in an ascending straight 
line. A further inspection of the numerical values (Table 6) leads to the conclusion 
that 

Z2Q 7 ~ 1(1 --/~.) (2 - 2) (RZ) 2 for small values of RZ. (16) 

It is not surprising that the quadrupole moment vanishes for 2 = 1 and all RZ, in 
this case no charge being at centre 2. But it is striking that this vanishing occurs also 
for 2 = 2 which means, fo instance, 3 positive unit charges at centre 1 and one 
negative unit charge at centre 2. However, there is no complete vanishing, higher 
powers of RZ becoming essential. 

For  large values of RZ, Z2"~ is proportional to the inverse third power of 
RZ (Dalgarno and Stewart [10]). Again this behaviour is nicely shown in Fig. 8. 

Z2(5/' 

2 

1 

O.L. 

0.2 

0.1 

0.04 

0.02 

0.01 i 

0.004 

0.002 - - 

0s - 

H~' 

Isd 

t ~ z '  

0.1 0.2 0.5 I 2 ~ 6 B 10 20 30[%] 
~ J 

Fig. 8. Expectation value of 3z '2 - r '2 as a function of R, for is(~ 
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F. Some Properties of  Those Generalized Diatomic Orbitals Which 
Approach Slater-Zener Type Orbitals for R-~  0 

Be Q a constant independent o f  R. Generalized diatomic orbitals in which 
i) the number of  nodes  of  U(~) is zero (i.e. n r = n, = S = 0) 

ii) Q = - �89 - 1) - l ( l  + 1)) in Eq. (1) 
converge, for R ~ 0, to Slater-Zener type functions (STAOs) 

- -  Z r  

Zo = N r " * - l e  ~* Y~'(O, r (17) 

where N is a normalizat ion constant, Z = Z 1 = Z2, and the corresponding electron 
energy is 

Z 2 

E 0 = 2n,2  [11]. (18) 

i 

9 2 
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/ / /  
/ / /  

/ /  
/ "  

/ /  
/ /  

/ 
. 3~n  u (O =-2) / / /  

/ /  

2o - \3~g (o=-3) / 

io - ",. / \,,' 
/'\ 

5 - eg  

IIo - - . 

oI~I I I I I I " R 
2 ~ 6 8 io 12 [~o] 

Fig. 9. Expectation values of 02 = x 2 + y2 as functions of R, for some Slater-type diatomic orbitals 
In*/~) 
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For R ~ ,  they converge to a linear combination of two atomic orbitals 10 Tm) 
centered at centre 1 respectively 2 (Z1 = Z 2 )  or to one atomic orbital l0 Tm) 
centered either at centre 1 or at centre 2 [1]. As a consequence, all generalized 
diatomic orbitals In*Ira) of  the type characterized above which agree in l and m 
have the same limit function for R ~ oo. Therefore all expectation values tend to 
become equal for R ~ ~ within each of the following three groups of  functions: 

a) l = m = 0  
lstr o( Q = 0), 2*sao( Q = - 1), 3*str o( Q = - 3) 

b) / =  1, m - 0  
2ptr,,(Q = 0), 3*ptr.(Q = - 2) 

c) l = m = l  
2 p ~ . ( Q  = 0), 3 * p ~ u ( Q  = - 2).  

This behaviour is shown in Fig. 9, in which 02 is plotted against R for these 
three groups of functions, assuming Zx = Z:  = 1. 

The limit 02 for R = 0 can easily be computed: 
As 02 = r 2 sin20 and as sin20 = 2(po(cOs0 ) -P2(cos0)) ,  we get 

O 2 o = r~.-~(1 - eZ(Im, lm)), (19) 

where the numerical value of c2(Im, lm) may be found in the book  by Condon 
and Shortley [12, p. 175]. From the same authors [12, p. 117] we take that 

- 1 
r 2 = ~ -  [ 5 n  2 + 1 - 31(l + 1)3 n2a2 Z2 (20a) 

for hydrogenic orbitals. 
For Slater orbitals, 

-- 1 n*2 a 2 
r g = ~ - [ 2 n  . 2 + 3 n * + 1 ]  Z2 , (20b) 

Table 7 

System: Z l = Z  2=1  Q = - I  
State: 2*sag converging to Slater orbital  2*s with Z = 2 

(n, = n~ = S = 0) 

R 

0 
0.1 
0.2 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
8.0 

10.0 
12.0 

Ekin 

1/6 
0.1667 
0.1668 
0.1712 
0.1990 
0.2554 
0.2614 
0.2650 
0.2820 
0.3096 
0.3658 
0.4001 
0.4189 

1 ~ -  1 
rj. r 2 r 1 �9 r 2 Ep~ 

- 1 1/3 - 2/3 
-1.0022 0.3350 -0.6672 
- 1.0089 0.3398 -0.6691 
-1.0541 0.3692 -0.6849 
-1.1740 0.4266 -0.7474 
-1.2325 0.3776 -0.8549 
-1.1256 0.2706 -0.8550 
-1.0355 0.2015 -0.8340 
-0.9888 0.1612 -0.8275 
-0.9749 0.1367 -0.8381 
-0.9853 0.1081 -0.8772 
-0.9956 0.0897 -0.9058 
-0.9989 0.0764 -0.9225 

- 1/2 
-0.5006 
- 0.5022 
-0.5137 
- 0.5484 
-0.5995 
-0.5936 
- 0.5690 
- 0.5456 
-0.5285 
-0.5114 
-0.5058 
-0.5036 

02 

5 
4.9851 
4.9406 
4.6478 
3.8886 
3.0181 
2.9318 
2.9999 
3.0152 
2.9391 
2.6774 
2.4876 
2.3821 

0 
0.0027 
0.0106 
0.0652 
0.2479 
0.9782 
2.4465 
5.0274 
9.0692 

14.7069 
29.9114 
48.8543 
71.2864 
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which can be deduced from (20a) by putting n = n* and 1 = n* - 1, as all Slater 
orbitals with the same n* have the same radial part  R*(r) which agrees with the 
hydrogenic radial part  R,l(r) for n = n* and l = n - 1. 

In Table 7, several expectation values, as functions of R, have been collected 
which have been computed with the nodeless Slater-type diatomic orbital 
2*s(Z1 = Z2, Q = - 1) converging to the Slater-type atomic function 2*s(Z = 2). 
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G. Appendix 

If (1) is separated in spheroidal coordinates #, v, q~, the differential equation 
for V(v) turns out to be 

{ d  2 d A ,  m 2 } 
- ~ - v  ( 1 - v ) ~ v  + + D v + p Z ( 1 - v 2 ) + ~  V(v)=0 .  (21) 

(This is Eq. (5a)of [i]).  Here A' is the separation constant, D stands for RZ 1 - RZ2, 
and p is the energy parameter.  

We assume that the following expansion of V(v) in terms of associated Legendre 
functions of the first kind holds: 

V(v)= ~ diPiI211+k(V ) . (22) 
k = 0  

(21) and (22) give rise to the following linear five-term recursion formula for the 
coefficients d~: 

Bk, k-2d'k-2 +Bk, k-ld'k-1 + (Bk, k +A')d'k +Bk, k+ld'k+l +Bk, k+2d'k+2 = 0 .  (23) 

The elements of the pentadiagonal matrix B ocurring here are defined by 

(k - 1)k p2 l = k + Iml 
1) 

k 
Bk'k-1 -- 21- 1 D 

l(l + 1) + m 2 - -  1 p2 + l(l + 1) (24) 
Bk'k=2 (2 / - -1 ) (2 /+3 )  

/ + [ m l + l  
Bk, k+l= " 21+3 D 

(1 + Iml + 1) (l -+- Iml § 2) 
Bk'k+2=-- (21+3)(21+5)  

p2. 
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